Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Martyn Jevric, Dennis K. Taylor and Edward R. T. Tiekink*

Department of Chemistry, The University of Adelaide, Australia 5005

Correspondence e-mail:
edward.tiekink@adelaide.edu.au

Key indicators

Single-crystal X-ray study
$T=173 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$
R factor $=0.037$
$w R$ factor $=0.135$
Data-to-parameter ratio $=18.2$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Ethyl (E)-4-(2-hydroxy-1-naphthyl)-2-methyl-2butenoate

The structure determination of the title compound, $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{O}_{3}$, shows an E conformation about the $\mathrm{C}=\mathrm{C}$ bond. Molecules associate via $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ interactions leading to the formation of chains.

Comment

The title compound, (I), was one of the isomers prepared from the reaction between the ylide $\mathrm{Ph}_{3} \mathrm{P}=\mathrm{C}(\mathrm{Me}) \mathrm{C}(\mathrm{O}) \mathrm{OEt}$ and 2-(2-naphthyl)acetaldehyde (Haselgrove et al., 1999). The structure analysis shows (I) to be the uncyclized (E)butenoate (Fig. 1). The side chain, while not coplanar with the aromatic portion of the molecule, is effectively planar as seen in the sequence of torsion angles of $-178.6(1), 0.8(1)$, 179.97 (8) and $179.10(8)^{\circ}$ for $\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 2-\mathrm{C} 1, \mathrm{C} 3-\mathrm{C} 2-$ $\mathrm{C} 1-\mathrm{O} 12, \mathrm{C} 2-\mathrm{C} 1-\mathrm{O} 12-\mathrm{C} 13$ and $\mathrm{C} 1-\mathrm{O} 12-\mathrm{C} 13-\mathrm{C} 14$, respectively. The only two torsion angles in the molecule with 'non-trivial' values are those describing the overall conformation of the ethylbutenoate group relative to the naphthalene moiety, namely $\mathrm{C} 2^{\prime}-\mathrm{C}^{\prime}-\mathrm{C} 4-\mathrm{C} 3$ and $\mathrm{C} 1^{\prime}-\mathrm{C} 4-\mathrm{C} 3-$ C 2 , which are 94.6 (1) and 130.4 (1) $)^{\circ}$, respectively.

(I)

The major intermolecular interaction in the lattice occurs between the $\mathrm{O}-\mathrm{H}_{2}{ }^{\prime}$ and translationally related carbonyl O 11 atoms, such that $\mathrm{O}-\mathrm{H} 2^{\prime}$ is $0.92 \AA, \mathrm{H}_{2}^{\prime} \cdots \mathrm{O} 11^{\mathrm{i}}$ is $1.84 \AA$, $\mathrm{O} 2^{\prime} \cdots \mathrm{O} 11^{\mathrm{i}}$ is 2.751 (2) \AA and the angle at $\mathrm{H} 2^{\prime}$ is 174°; symmetry code: (i) $1+x, y, z$. This association leads to the formation of chains along the a axis.

Received 29 March 2001
Accepted 6 April 2001
Online 12 April 2001

Experimental

The title compound was prepared according to the literature procedure of Haselgrove et al. (1999). Crystals were obtained from the slow

Figure 1
The molecular structure and crystallographic numbering scheme for (I). Displacement ellipsoids are shown at the 50% probability level (Johnson, 1976).
evaporation of a dichloromethane solution of the compound (m.p. 369-370 K).
Crystal data
$\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{O}_{3}$
$D_{x}=1.243 \mathrm{Mg} \mathrm{m}^{-3}$
$M_{r}=270.33$
Monoclinic, $P 2_{1} / n$
Mo $K \alpha$ radiation
Cell parameters from 25
$a=9.273(2) \AA$
$b=4.877$ (2) \AA
$c=31.976(5) \AA$
reflections
$\theta=12.2-14.9^{\circ}$
$\beta=92.76$ (2) ${ }^{\circ}$
$V=1444.5(7) \AA^{3}$
$\mu=0.08 \mathrm{~mm}^{-1}$
$T=173 \mathrm{~K}$
Block, pale yellow
$0.40 \times 0.31 \times 0.16 \mathrm{~mm}$

Data collection

Rigaku AFC-7R diffractomete ω scans
3930 measured reflections
3318 independent reflections
2254 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.041$
$\theta_{\text {max }}=27.5^{\circ}$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.037$
$w R\left(F^{2}\right)=0.135$
$S=0.82$
3318 reflections
182 parameters
H-atom parameters constrained

$$
\begin{aligned}
& h=0 \rightarrow 12 \\
& k=0 \rightarrow 6 \\
& l=-41 \rightarrow 41 \\
& 3 \text { standard reflections } \\
& \quad \text { every } 400 \text { reflections } \\
& \quad \text { intensity decay: } 0.3 \%
\end{aligned}
$$

$$
\begin{aligned}
& w=1 /[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0918 P)^{2} \\
&+0.5393 P] \\
& \text { where } P=\left(F_{o}{ }^{2}+2 F_{c}^{2}\right) / 3 \\
&(\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.21 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.17 \mathrm{e}^{-3}
\end{aligned}
$$

The C-bound H atoms were placed in their geometrically calculated positions and included in the final refinement in the riding model approximation with an overall displacement parameter. The $\mathrm{O}-\mathrm{H}$ atom was located from a difference map but was not refined.

Data collection: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1996); cell refinement: MSC/AFC Diffractometer Control Software; data reduction: TEXSAN (Molecular Structure Corporation, 1997); program(s) used to solve structure: SIR97 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); software used to prepare material for publication: SHELXL97.

The Australian Research Council is thanked for support.

References

Altomare, A., Cascarano, M., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. \& Camalli, M. (1994). J. Appl. Cryst. 27, 435.
Haselgrove, T. D., Jevric, M., Taylor, D. K. \& Tiekink, E. R. T. (1999). Tetrahedron, 55, 14739-14762.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Molecular Structure Corporation (1996). MSC/AFC Diffractometer Control Software. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
Molecular Structure Corporation (1997). TEXSAN for Windows. Version 1.05. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.

Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.

